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ABSTRACT

Solar ponds have recently become an important source of energy that isused in
many different applications. The technology of the solar pond is based on storing solar
energy in salt-gradient stratified zones. Many experimental and numerical investigations
concerning optimum operational conditions and economical feasibility of solar ponds have
been published in the last few decades. In the present study, a novel two-dimensional
mathematicalm\/_/er_l'that uses derived variables is developed and presented. This model
utiliz;;':/orticity, dilatation, density, temperature and concentration as dependent variables.
The resulting governing partial differential equations are solved numerically by a semi-
implicit finite differencing scheme to predict the transient performance of a solar pond in
two-dimensional domain, The boundary conditions are based on measured ambient and
ground temperatures at Kuwait city. Based on the present formulation, a computer code
has been developed to solve the problem at different operating conditions. The results are
compared with the available experimental data and one-dimensional numerical results.
Two-dimensionality effects are found to depend mainly on the aspect ratio of the pond. A

parametric study is conducted to determine the optimum pond dimensions and operating

conditions.
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ABSTRACT

Solar ponds have recently become an important source of energy that isused in
many different applications. The technology of the solar pond is based on storing solar
energy in salt-gradient stratified zones. Many experimental and numerical investigations
concerning optimum operational conditions and economical feasibility of solar ponds have
been published in the last few decades. In the present study, a novel two-dimensional
mathematicalm\/_/er_l'that uses derived variables is developed and presented. This model
utiliz;;':/orticity, dilatation, density, temperature and concentration as dependent variables.
The resulting governing partial differential equations are solved numerically by a semi-
implicit finite differencing scheme to predict the transient performance of a solar pond in
two-dimensional domain, The boundary conditions are based on measured ambient and
ground temperatures at Kuwait city. Based on the present formulation, a computer code
has been developed to solve the problem at different operating conditions. The results are
compared with the available experimental data and one-dimensional numerical results.
Two-dimensionality effects are found to depend mainly on the aspect ratio of the pond. A

parametric study is conducted to determine the optimum pond dimensions and operating

conditions.
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CHAPTER (1)

INTRODUCTION



1. INTRODUCTION

One of the relatively recent methods used in storing solar energy is solar pond. Solar
energy has become one of the most important sources of energy. Applications include

heating, desalination, power production and many other useful purposes.

The configuration of solar ponds (Fig. 1) are generally identified by four different
zones: the upper convective zone (UCZ), the non-convective zone (NCZ), the lower

convective zone (LCZ), and the ground zone (GZ).

In the upper convective zone (UCZ), a thin convective layer of low salinity water
exists. The bottom brines are known as the lower convective storage zone (LCZ). The high
salt concentration in LCZ necessitates a transition gradient zone to the upper fresh water
zone, Fig.1. The non-convective gradient zone (NCZ)insulates the LCZ from the cooler
UCZ. Once a solar pond is established, part of the solar radiation striking the surface
penetrates the pond zones to reach the LCZ where it is trapped. Part of this trapped energy
is stored in the LCZ and the other part is transferred back in the water by conduction or lost

through the ground zone and pond sides.

The studies that investigate the physics and performance of solar ponds exist in the
literature since 1960, while artificial solar ponds were built and operated since 1970.
Kalecsinsky [1] (1902) was the first one to report the phenomena of solar pondsina
naturally solar heated lake in Transylvania, Hungary. He suggested the use of artificial

solar ponds to store solar energy for home and industrial uses.

Researchers have conducted several analytical, numerical and experimental models
to predict the performance of solar ponds. Wang and Akbarzadeh [2] studied the relation

between the efficiency of a solar pond and the temperature difference between the bottom



zone and the ambient. Their analysis showed that if the temperature and salt concentration
dependency for thermal conductivity of water is ignored, and average values are used, small
error is observed. It has also shown that if a wet soil exists, then the ground losses are
serious, otherwise it is neglected. Weinberger [3] and Tabor et al [4] investigated the
physics of solar ponds and calculated the annual variation in one-dimensional non-
convecting systems. A one-dimensional mathematical model that simulates all pond zones
and energy flux has been investigated by Panhi [5]. He examined the influence of the effect
of the surface wind and the water evaporation rate on the pond efficiency. He concluded
that a reduction of the evaporation rate increases the pond efficiency and the rate of heat
extraction, Xu and Peter [6] examined the use of the injection method in salinity gradient
establishment for solar ponds. They developed a numerical algorithm for establishing any
desired salinity profile in a solar pond. Hull [7] constructed a computer model of a salt-
gradient solar pond (SGSP) to verify the validity of assuming constant solar salt solution.
He showed that the thermal behavior of the solar pond depends on the transparency of
the non-convective insulation layer. Rubin et al {8] applied a one-dimensional finite
difference model to each layer of a salt-gradient solar pond (SGSP) with a non-reflecting
bottom. Keren et al {9] developed numerical and physical experiments to compare the
performance of a conventional salt gradient solar pond and a salt gradient pond operating as
an advanced solar pond with an increase in overall salinity near the bottom of the gradient
zone. Joshi and Kishore [10] investigated the effect of the solar attenuation modeling on
the performance of solar pond. The study showed that the storage temperature is
generally insensitive to the modeling of the solar attenuation. A numerical model to predict
the transient thermal performance of a solar pond was developed by Chang [11]. The solar
energy absorbed at each level in the pond was used as an energy source term in the heat
diffusion equation, Meyer [12] developed a numerical model to describe the transient
behavior of the interface between the convective and non-convective regions. Salinity and
temperature profiles are determined as a function of time. The model accounts for the
entrainment caused by the wind generated turbulence. Cha and Schertz [13] developed a

one-dimensional model to predict the temperature and concentration gradients in solar

10



ponds. The model includes the effect of the thermal and mass diffusivities due to turbulent
wind mixing and double diffusive convection. It has been concluded that the surface
convective layer increases with the wind and that in the absence of wind, the double
diffusive convection is capable of maintaining (UCZ) temperature. A transient model of
(SGSP) has been established by Hassab, et. al. [14] to predict solar transmission,
temperature and salt distribution inside the pond for any day of the year. The study has been
carried out for the Arabian Gulf conditions and it shows that a pond with thicker storage
zone has less temperature fluctuation between summer and winter, hence better
performance. In addition, the analysis showed that major losses of solar energy occurred
due to the surface evaporation and ground conduction. Also, they have predicted that a
depth of 4.1 m is enough to maintain optimum design conditions (709 C-90°C). Most
recently, El-Refaee et. al [15] developed a 1-D model that accounts for surface
evaporation, wind effects, load extraction and variations of the brine physical properties
with the temperature and salinity. They recommended optimum values of 1.3 mand 1.4m

for the gradient and storage zones thickness.

A parametric study of salt-gradient solar ponds of size less than 100 m? is presented
by Kamal [16]. The study is based on a dynamic mode! of the pond which takes into
account the variation of solar radiation, ambient temperature and the amount of heat
extracted with time. The model also considered a small scale pond whose top is covered by
a transparent cover. Newell [17] presented a numerical simulation which compares
performances between a conventional solar pond and a proposed solar pond configuration.
The proposed pond maintains a stratified storage zone below the lower convecting zone. A
two-region numerical model of the injection process using axisymmetric radial diffusers has
been developed by Eghneim [18] to investigate the effects of the diffuser geometry, pond
size and injection conditions on the gradient modification. The model uses the initial salinity
and temperature distributions to find the fluid injection flux required to bring the gradient to
a condition as close as possible to optimal. Most of the work in the literature survey

considered the use of one-dimensional model to simulate and analyze the performance of

11



solar ponds. The one-dimensional model which assumes small convective motions and v;ery
slow salt diffusion gives a very close assumption and reflects almost as a closer image as
possible to the real case. However, recent research works show that a one-dimensional
assumption is not efficient for many practical engineering applications where the wind
effects, heat losses from pond bottom and sides, and double diffusion phenomena represents

an important constraints to a complete analytical study of a solar pond.

One of the most acceptable and approved two-dimensional model is the one
proposed by Newell [17]. In this investigation the thermal energy performance prediction of
solar ponds is accomplished first with a one-dimensional model. The decanting method of
thermal energy extraction for large scale ponds was then analyzed by a two-dimensional
numerical fluid dynamics scheme. The two-dimensional governing equations were presented
in the primitive variables form, but the complexity of double-diffusion systems makes the

progress in two-dimensional modeling problems more difficult.

In the present work, a novel two-dimensional model that uses derived variables has
been developed to predict the transient performance of a 2-D solar pond. The model solves
the governing equations for the unknown derived variables: vorticity, dilatation, density,
temperature and concentration. Although the primitive-variables formulation (PVF) is
widely used to solve the internal-thermal flow problems the present derived-variable
formulation (DVF) offers more attractive features than the PVF. The dilatation, which has a
more significant physical meaning, represents a "source-like” strength due to the
inhomogeninty of the saline inside the pond. It is equal to divergence of the velocity vector
inside the pond. The pressure and the velocity components in the PVF is replaced by the
dilatation and the vorticity in the present DVF. This indeed alleviate the difficulties that
arises when prescribing the pressure boundary conditions at the walls in the PVF.
Mathematically, the kinematics of the problem is divided into two simple problems. A
vortical incompressible flow problem (contribution of the vorticity to the flow field) and a

compressible-like potential flow problem (contribution of the dilatation to the velocity field).

12



Moreover, the kinetics equations are all written in transportive form which indeed simplify

the numerical procedures.

Since the salinity distribution is controlled in most of the real solar ponds, the
problem is simplified by assuming constant salinity distribution. In this case, the kinetics of
the problem is represented only by four transport equations: the vorticty transport equation,
the dilatation transport equation, the energy transport equation and the density equation.
Moreover, the present problem is further simplified by calculating the density froman
imperical formula that relates the density with temperature and salinity. The above
simplifications have accomplished a significant reduction in the kinetics computations since
only two transport equations (vorticity and energy) are to be solved iteratively. The

dilatation is directly computed from the continuity equation.

In the following sections, details of mathematical and numerical models, boundary
conditions and solution procedure are presented. Predictions are obtained for real
operational conditions for two years of simulation. Effect of two-dimensionality is studied
by changing the aspect ratio of the pond. Finally, a parametric study is conducted to
determine the effect of thicknesses of the pond zones on the transient behavior of the
storage temperature. Discussion and comments are presented at the end of the present

thesis.

13
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In this chapter, the mathematical formulations that govern the transient behavior of
the characteristic parameters inside the pond as well as the boundary conditions are
presented. In order to improve the readability, the normalization of the derived governing

equations used in this chapter is omitted in the main text and is given in appendix C.

The governing equations for the saline inside the solar pond are expressed in

derived variables. The derivation of each governing equation is given below:

2.1  The Continuity Equation for the Saline

The general form of the continuity equation for a variable density flow is given as:
P =, -
—+V. =0 2.1
5 V(%) (2.1)

However, since:

V.(pv)=pV.v+v.Vp

Substituting the above equation in equation (2.1) yields:
%te+v.vp+ pV.9=0 @2)

Knowing that the total derivative for the density is:

@=@+\7.V"p
Dt ot

and defining the dilatation B as a source strength [27]
p=V.v

then equation (2.2) can be written in the form of

Dp
—+pB=0
Dt pB

or

15



Pp__
Dr - pB (2.3)

Equation (2.3) describes the continuity equation for the saline in terms of the dilatation .

2.2  The Dilatation Transport Equation for the Saline

The general form of the fluid momentum equation is given by:

p— =pg+V.1 (2.4)
where T is the stress tensor and is given by:
T= (-p+ l?.?)ﬁijéi €;+ zl-leijéiéj

and & is the strain tensor and is given by:

Hi
Oxi
eij= .
1.0vj oy .
2la Yol 1)

i=]j

By expanding the divergence of the stress tensor, and knowing that V.v = 8 we get:
Vi= ?[(—p + lﬁ)aij_éiéj + Zueijéié'j]
0

- 0 , =
=jax—j(-P+lﬂ)5ijeiej+2u‘3x—j(eijeiej) (2.5)

where §; is the Kronecker symbol and is defined from tensor algebra* as follows:

MY
i7l0 i#j

5 . bp . OB .
Then 5'x"j—(_p+lB)6ijeiej__§+A’Xj (l—-j)

[

= —Tp+ATP (2:6)

* Appendix B-Tensor algebra
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And;

v; .

2“3%(eij_éiéj) = Zuaxij(%(a—'}*'%))
_ [ 62vj +62vi
l-l_axjaxi anz |
[#u Py, Pu v Fu Pu P, Py o1
”_axz yox T X0y oy?  ox2 oy O Oy 3= 4
_[Fu, Fu Py Py, [i(gi+g)+g(@_+g))
MRy e T ) &Y Ty &
Since
[i‘;+g§g+§x§+§;)=vzu+vzv

-_-Vz"
and
d(du ov Ofou ov) B B _ &
—a—xﬂ(a+-a—y-)+g[a+-a—y—-)—a‘+—av—Vﬁ
Then
2uaxij(eijéiéj) = uVZV +uvp 2.7

From equation (2.6) and equation (2.7), the expression in equation (2.5) can be written as:

V.3=-Vp+AVB+puviv+uVp (2.8)

where the first and second coefficients of viscosity (u,A) depend only on the temperature

and on the salinity.

17



Now, substituting equation (2.8) in equation (2.4) yields:

DV & .c e Sl
P D = uVp +AVB+uvie - Vp+pg (2.9)

Taking the divergence of each term in equation (2.9) gives:

ﬁ.[p%‘;i = uVB +AVB + pv3v - V‘?p+pg] (2.10)

Analyzing each term of the above equation separately,

= Dv - Dvy Dv -

DB+Vp D; 2.11)
V.(uVB) = pv?p (2.12)
7.(AVp) = AV (2.13)

V.(nV20) = nvi(V.9)

= uvep (2.14)
V.(-Vp) = -V (2.15)
V.ipg) = pV.B+8Vp (2.16)

Substituting equations (2.11), (2.12), (2.13), (2.14), (2.15) and (2.16) in equation (2.10)

and dividing by p  we get:

18



< = 2
D_9+_‘7_'F_’ Dy _ 2“v25+1‘v2g V'r

= . .= YP
. +VEg+rg.— (2.17)
Dt p Dt p p p p

Knowing that A =- %- it , (for most applications in compressible flows), equation (2-17) is

recast into the following form:

DB _4 o2 oo,V Vp DV
Dt 3VV ﬁ+Vg+gT—T--p—T)—t- (218)

Equation (2.18) is the general form of the dilatation transport equation. Where the left
hand side represents the total convective term while the first term on the right hand side

represents the diffusion. The other terms are the source terms.

2.3  The Vorticity Transport Equation for the Saline
The general form of the momentum equation has been derived as in equation (2.9)

in the form of :

p-l-)%= pﬁ’B+l€’B+uV2\7—-¢'p+p§

Applying the curl operator on each term of the above equation, we obtain:

V_Fxl:p—I];—T =uVB+AVB +uVv-Vp+ pg] (2.19)

Analyzing each term of the above equation separately ™,

- Dv - Dv Dv -
Vxp By = PVX T ~ B XVP
Dv - Dv

= Vpx— Dt +pVx— Dr

* Appendix A-Vector algebra
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= f’px%l:—+ pvx(% +-;—€’v2 - i‘rx(ﬁx\'/))

=vpx%‘t’+ pg(vxmgvxw - pVxvx(Vx7)

Considering vorticity & = Vx¥ and VxVv? =0, then

Dv

= Vpx
th

R
+p——pVx¥xd
Patpxm

= 6px%{-+p%+pv.% +pd(V.9)-p(6.V)¥

= 7px%¥- + p% +p3(V.9)~-p(V.®)¥
= vpxg—f+p%?+pﬁﬁ

where V.6 =V.Vxv=0

VxpVp =puvxVp= 0

VxAVB = AVxVB=0

@’xuvzv = qu (Vx¥)
= uv2

Vx(-Vp) =0
Vx(pg) = -8xVp=Vpxg

20
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Substituting equations (2.20), (2.21), (2.22), (2.23), (2.24) and (2.25) in equation (2.19)

then dividing by p and rearranging we get:

DG _ vi5+ TPy YP, DY _&p (2.26)

Equation (2.26) is the general form of the vorticity transport equation. Where the left
hand side represents the total convective term while the first term on the right hand side

represents the diffusion. The other terms are the source terms.

2.4  The Energy Transport Equation for the Saline

The general energy conservation equation is written in tensor form as:

(2.27)

where;

E is the intensive internal energy.

g is the heat transfer vector (including conduction and radiation)

q, is the thermal extracted load.

Considering the first term on the right hand side of equation (2.27), then;
’fij%ii =[(-p+28)8;; +2ueij]%v;:'

Following a similar analysis from section 2.2, we get:

Ni_ N i
P+ M)yl = —pa +ABE (D)

21



i _u N 5
But Ei'—ax'*'ay—v"—ﬂ
av.
Then (-p+w)5ij-§x—:= ~pB+Ap2 (2.28)
also,

®

-3 (3) - 45)- (3]

22
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